Pozo de Potencial

Pedro Velarde

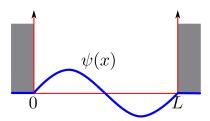
Departamento de Ingeniería Energética Instituto de Fusión Nuclear Universidad Politécnica de Madrid

7 de marzo de 2019

Definiciones

- Las soluciones a la ecuación de Schrödinger en un pozo de potencial constante es uno de los casos mas simples pero de considerable utilidad en varias situaciones reales.
- ightharpoonup Consideramos en este caso una partícula de masa m sometida a un potencial

$$V(x) = \left\{ \begin{array}{ll} 0 & \text{para} & 0 \leq x \leq L \\ \infty & \text{para} & x < 0 \text{ o } x > L \end{array} \right. \tag{1}$$



Caso clásico

 La solución clásica a este problema sería una partícula en movimiento periódico con velocidad constante en módulo

$$v = \sqrt{2E/m}$$

$$T = \frac{2L}{v} \; ; \; \omega = \frac{\pi v}{L}$$

ightharpoonup Si desconocemos la situación inicial de la partícula, podemos aun determinar la probabilidad de encontrarla en el intervalo (x,x+dx), que ha de ser constante

$$P(x) = \text{const. y } \int_0^L P(x)dx = 1 \rightarrow$$
 (2)

$$P(x) = \begin{cases} \frac{1}{L} & \text{para} \quad 0 \le x \le L \\ 0 & \text{para} \quad x < 0 \text{ o } x > L \end{cases} \tag{3}$$

Esto da los valores medios

$$\begin{array}{rcl} \langle x \rangle & = & \int_0^L x P dx = L/2 \\ \langle x^2 \rangle & = & \int_0^L x^2 P dx = L^2/3 \\ \Delta x & = & \sqrt{L^2/3 - L^2/4} = L/2\sqrt{3} \end{array}$$

Solución

lacktriangle Dado que el potencial V no depende del tiempo, buscamos las soluciones estacionarias a la ecuación de Schrödinger, dadas por

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) = E\psi(x) \tag{4}$$

 \blacktriangleright En la región donde $V=\infty,\,\psi$ ha de ser cero. Como ψ ha de ser continua, se tiene que

$$\psi(0) = \psi(L) = 0 \tag{5}$$

▶ La ecuación (4) se suele escribir de forma algo más simple

$$\psi^{\prime\prime}(x) = -k^2 \psi(x) \quad \text{con} \quad k = \sqrt{2mE/\hbar^2}$$

La solución general es

$$\psi = Ae^{ikx} + Be^{-ikx}$$

con A y B constantes complejas.

Las condiciones de contorno (5), llamadas de pared, dan lugar a

$$A + B = 0$$

$$Ae^{ikL} + Be^{-ikL} = 0$$

Niveles de Energía

La condición $kL = n\pi$ implica que

$$E \equiv E_n = \frac{\hbar^2}{2m} \frac{\pi^2 n^2}{L^2}$$

es decir, la energía de la partícula (cinética) sólo puede tomar valores discretos.

▶ La solución para ψ será $\psi(x)=2iA\operatorname{sen}(kx)$. Aplicando las condiciones de normalización $\int_0^L |\psi|^2 \, dx=1$, tenemos

$$\psi_n(x) = \sqrt{\frac{2}{L}} \operatorname{sen}\left(\frac{n\pi x}{L}\right)$$

donde indexamos con n las soluciones.

▶ La solución para Ψ (temporal) será de la forma

$$\Psi_n(x,t) = e^{-i\hbar^{-1}E_n t} \psi_n(x)$$

 La solución más general del problema de pozo infinito será una combinación lineal de estas soluciones (que forman una base)

$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n e^{-i\hbar^{-1} E_n t} \psi_n(x) = \sqrt{\frac{2}{L}} \sum_{n=1}^{\infty} c_n e^{-i\hbar^{-1} E_n t} \operatorname{sen}\left(\frac{n\pi x}{L}\right)$$

Valores medios

- Obtenido Ψ_n podemos comparar los valores medios con los obtenidos anteriormente de acuerdo con la mecánica clásica.
- Los valores medios en un estado Ψ_n se pueden calcular directamente con ψ_n ya que

$$\langle A \rangle = \int_0^L \Psi_n^* A(x, -i\hbar \frac{d}{dx}) \Psi_n = e^{i\hbar^{-1} E_n t} e^{-i\hbar^{-1} E_n t} \int_0^L \psi_n^* A(x, -i\hbar \frac{d}{dx}) \psi_n dx$$

Con esto podemos calcular los valores medios

$$\langle x \rangle = \frac{2}{L} \int_0^L x \sin^2 \left(\frac{\pi nx}{L} \right) dx = \frac{L}{2}$$

$$\langle x^2 \rangle = \frac{2}{L} \int_0^L x^2 \sin^2 \left(\frac{\pi nx}{L} \right) dx = \frac{L^2}{3} \left(1 - \frac{3}{2\pi^2 n^2} \right)$$

$$\langle p \rangle = \frac{2}{L} \int_0^L \sin \left(\frac{\pi nx}{L} \right) \left(-i\hbar \frac{d}{dx} \sin \left(\frac{\pi nx}{L} \right) \right) dx = 0$$

▶ El resultado se acerca al clásico sólo cuando $n \to \infty$.

Combinación de estados puros

Empiezan a surgir diferencias si escogemos combinaciones lineales de estados ψ_n , por ejemplo

$$\Psi = \frac{1}{\sqrt{2}} \left(e^{-i\hbar^{-1}E_1 t} \psi_1 + e^{-i\hbar^{-1}E_2 t} \psi_2 \right) \tag{7}$$

En este caso tenemos

$$\langle x \rangle = \langle \Psi | x | \Psi \rangle = \frac{1}{2} \int_0^L x \left(|\psi_1|^2 + |\psi_2|^2 + 2\mathcal{R} \left(e^{-i\hbar^{-1}(E_2 - E_1)t} \psi_1^* \psi_2 \right) \right) dx$$

lacktriangle En este caso particular las ψ_n son reales, y la integral anterior se simplifica a

$$\langle x \rangle = \frac{L}{2} + 2 \int_0^L x \psi_1 \psi_2 dx \cos\left(\hbar^{-1} (E_2 - E_1)t\right) \tag{8}$$

y teniendo en cuenta que $\int x \cos ax dx = \cos ax/a^2 + x \sin ax/a$

$$\langle x \rangle = \frac{L}{2} \left(1 - \frac{32}{9\pi^2} \cos(\omega_{12}t) \right)$$

$$\operatorname{con} \omega_{12} = h^{-1}(E_2 - E_1)$$

Combinación de estados puros

- Por lo tanto el valor medio de la posición no es constante (L/2) sino que oscila con el tiempo alrededor de ese valor.
- ▶ Sin embargo la energía media si es constante en el tiempo, como lo son los valores de E_n . Si consideramos la solución general $\Psi = \sum_n c_n e^{-i\hbar^{-1}E_nt}\psi_n$, tenemos

$$\langle H \rangle = \langle -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \rangle = \int_0^L \Psi^* H \Psi dx = \sum_{n,m=1}^\infty c_n^* c_m e^{-i\hbar^{-1}(E_n - E_m)t} \int_0^L \psi_n^* H \psi_m dx \quad (4.5)$$

Pero ψ_n es función propia de H con valor propio E_n , por lo tanto $H\psi_n=E_n\psi_n$. Si sustituimos esto en (9) tenemos

$$\langle H \rangle = {\sf Energ}$$
ía media $= \sum_{n,m=1}^\infty E_m c_n^* c_m e^{-i\hbar^{-1}(E_n-E_m)t} \int_0^L \psi_n^* \psi_m dx$

Combinación de estados puros (cont)

Pero las ψ_n son ortogonales entre sí, por al ser H autoadjunto, y como también se puede comprobar fácilmente por inspección directa. Por lo tanto

$$\int_0^L \psi_n^* H \psi_m dx = E_n \delta_{nm}$$

y sustituido esto en (9) tenemos

$$\langle H \rangle = \sum_{n=1}^{\infty} |c_n|^2 E_n \tag{10}$$

Si aplicamos este resultado a (7) obtenemos: $\langle H \rangle = \frac{1}{2}(E_1+E_2)$, que no es ningún valor medible de energía de la partícula en la caja.

Valores medios de observables

- ▶ Habíamos obtenido para la energía $\langle H \rangle = \sum_{n=1}^{\infty} |c_n|^2 E_n$, donde E_n son los valores propios de H.
- Los valores medios de otros operadores A en la base de vectores propios de H es más compleja, ya que

$$\langle A \rangle = \int_0^L \Psi^* A \Psi dx = \sum_{n.m=1}^\infty c_n^* c_m e^{-i\hbar^{-1}(E_n - E_m)t} \int_0^L \psi_n^* A \psi_m dx$$

pero en general

$$\int_{0}^{L} \psi_{n}^{*} A \psi_{m} dx = \langle \psi_{n} | A | \psi_{m} \rangle \neq \delta_{nm}$$

y por lo tanto $\langle A \rangle$ dependerá del tiempo debido a los términos $e^{-i\hbar^{-1}(E_n-E_m)t}$ en la expresión anterior. Esto es lo que pasaba con la posición x en el ejemplo (7).

 Por lo tanto, escoger una base adecuada para representar las propiedades de algunas magnitudes (operadores) es importante

Representación A

- ▶ Veamos ahora qué pasa con un operador A obtenido sustituyendo $p \to -i\hbar\partial/\partial x$ en una función A(x,p), probablemente una magnitud clásica.
- lacktriangleright Si el operador resultante A (utilizamos la misma letra que la función A) es autoadjunto, y ϕ_n y a_n son sus vectores y valores propios, cualquier función de onda Ψ puede representarse como

$$\Psi(x,t) = \sum_{n} b_n \phi_n$$

para ciertos números complejos b_n

▶ Estos b_n , coeficientes de la proyección de Ψ sobre ϕ_n , se determinan vía el producto escalar

$$b_n = \langle \phi_n | \Psi \rangle = \int dx \phi_n^*(x) \Psi(x, t)$$

Representación A (cont)

 \blacktriangleright Como $|\Psi|^2=1$ (normalizada), y los ϕ_n son ortonormales (al ser A autoadjunto), tenemos

$$1 = |\Psi|^2 = \sum_{n,m} b_n^* b_m \langle \phi_n | \phi_m \rangle = \sum_n |b_n|^2$$

lo que implica que los b_n verifican

$$0 \le |b_n|^2 \le 1$$

lacktriangle Por otra parte, el valor medio de A en el estado Ψ es

$$\langle A \rangle = \sum_{n} |b_n|^2 a_n$$

► Todo esto tiene sentido si *A* es un *operador autoadjunto*

Ejemplo medida

- Veamos un ejemplo del proceso de medida descrito en el postulado anterior.
- Supongamos una partícula en un pozo infinito (caja) y en el estado combinación de los n=1,3

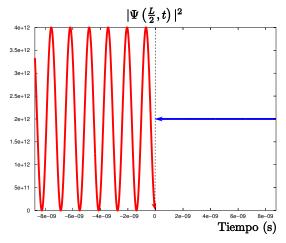
$$\Psi = \frac{1}{\sqrt{2}} \left(e^{-i\hbar^{-1}E_1 t} \psi_1 + e^{-i\hbar^{-1}E_3 t} \psi_3 \right)$$

y supongamos que en t=0 medimos la energía y obtenemos el valor E_3 (la otra única posibilidad sería E_1 , el resto tiene probabilidad nula). Entonces tenemos

$$\begin{array}{lll} \Psi(0-) & = & \displaystyle \frac{1}{\sqrt{2}}(\psi_1+\psi_3) \ \text{con probabilidades} \ P(E_1) = P(E_3) = \frac{1}{2} \\ \\ \Psi(0+) & = & \displaystyle \frac{1}{Z}\langle\psi_3|\Psi(0-)\rangle\psi_3 = \psi_3 \\ \\ \Psi(t) & = & \displaystyle e^{-i\hbar^{-1}E_3t}\psi_3(x) = \sqrt{\frac{2}{L}}e^{-i\hbar^{-1}E_3t} \sin\left(\frac{3\pi}{L}x\right) \ \text{para} \ t>0 \end{array}$$

Ejemplo medida

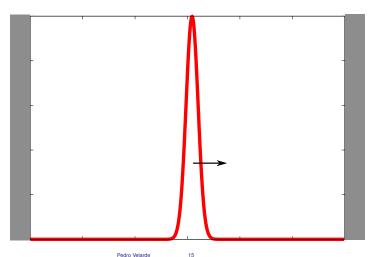
Representación de $|\Psi(L/2,t)|^2$ antes (t<0, color rojo) y después (t>0, color azul) de la medida. Observar la discontinuidad en la densidad de probabilidad en t=0.



Paquete de ondas en caja

Inicialmente la función de onda es un paquete de ondas gaussiano que se desplaza hacia la derecha con velocidad p_0/m

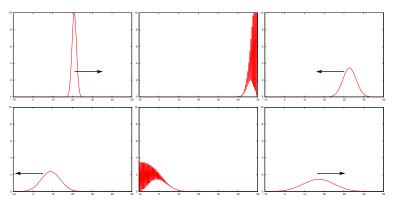
$$\Psi(x,0) = e^{i\hbar^{-1}px}e^{-\frac{(x-x_0)^2}{2\sigma}}$$



Paquete de ondas en caja

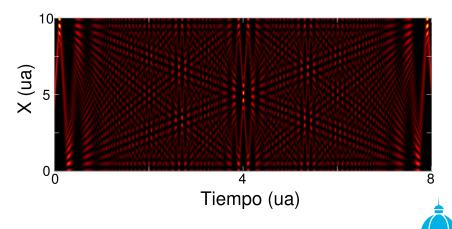
Gráficas de la densidad de probabilidad $P = |\Psi(x,t)|^2$ para distintos tiempos.

- En las gráficas situadas en medio (2 y 5) son instantes en los que se produce la reflexión del pulso en la pared (inversión del sentido del movimiento).
- Según avanza el tiempo, el paquete de ondas se va ensanchando. Las flechas indican el sentido del movimiento del máximo de la distribución.



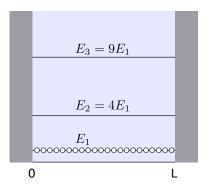
Paquete de ondas en caja

Mapa bidimensional de colores de la densidad de probabilidad $P=|\Psi(x,t)|^2$ en función de la posición x (eje X) y del tiempo (eje Y). Observar la *reconstrucción* de $\langle \Psi \rangle^2$ al final de la simulación (parte de arriba de la gráfica). ¿Cómo sería esa gráfica en el espacio (k,ω) , transformada de Fourier en el espacio y tiempo de Ψ ?



Presión ejercida sobre las paredes de la caja

- Supongamos que tenemos en la misma caja un número N grande de partículas iguales que no interaccionan entre ellas.
- Dado que no interaccionan entre ellas y no hay más grados de libertad, supondremos que la energía es la suma de las energías de cada partícula.



Presión ejercida sobre las paredes de la caja

 Vamos a calcular la energía del estado fundamental de este sistema de N partículas

$$E_T(N) = \sum_{i=1}^{N} E_1 = \frac{\hbar^2}{2m} \frac{\pi^2}{L^2} N = \frac{\hbar^2}{2m} \frac{\pi^2}{V^{\frac{2}{3}}} N$$

La presión ejercida por las N partículas es

$$P = -\frac{dE_T}{dV} = \frac{2}{3} \frac{E_T}{V}$$

ightharpoonup esta es la presión a $T=0~{\rm K}$

Presión ejercida sobre las paredes de la caja

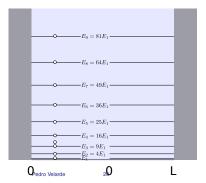
 La misma expresión de P hubiéramos obtenido suponiendo que cada partícula ocupa un nivel distinto.

$$E_T(N) = \sum_{n=1}^{N} E_1 = \frac{\hbar^2}{2m} \frac{\pi^2}{L^2} \sum_{n=1}^{N} n^2 = \frac{\hbar^2}{2m} \frac{\pi^2}{V^{\frac{2}{3}}} \frac{N(N+1)(2N+1)}{6}$$

▶ La presión ejercida por las N partículas es

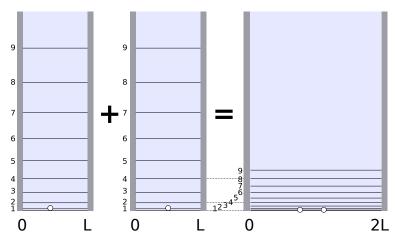
$$P = -\frac{dE_T}{dV} = \frac{2}{3} \frac{E_T}{V}$$

 $\,\blacktriangleright\,$ Observar que la energía total del sistema crece con $N^3,$ mientras que en el caso anterior crecía con N



Unión de dos cajas

 \blacktriangleright Otro ejemplo consiste en ver qué sucede cuando unimos dos cajas de igual tamaño L.



Unión de dos cajas

La energía de las dos cajas por separado y en el estado fundamental

$$E$$
separadas = $2E_1(L) = \frac{\hbar^2}{2m} \frac{2\pi^2}{L^2}$

 \blacktriangleright La energía de la caja de tamaño 2L con las dos partículas en el estado fundamental es

$$E^{\text{unidas}} = 2E_1(2L) = \frac{\hbar^2}{2m} \frac{\pi^2}{2L^2}$$

Si las dos partículas están en estados contiguos

$$E^{\text{unidas}} = E_1(2L) + E_2(2L) = \frac{\hbar^2}{2m} \frac{5\pi^2}{4L^2}$$

 \blacktriangleright En ambos casos la energía de la caja 2L es inferior a la de las dos cajas de tamaño L.

